

Climate Vulnerability and Risk Assessment: Current Practice and Implications for Environmental Assessment

OAIA Conference – October 20, 2022

OVERVIEW

Climate Change

Climate Risk Assessment

Sustainability

Application Examples

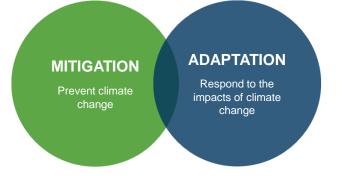
Urgent Call for Action on Climate Change

• Weather vs. Climate:

- Weather is the changes we see and feel outside from day to day
- Climate is the usual atmospheric conditions of a place
- What is Climate Change?
 - A change in the usual atmospheric conditions over time

Urgent Call for Action on Climate Change

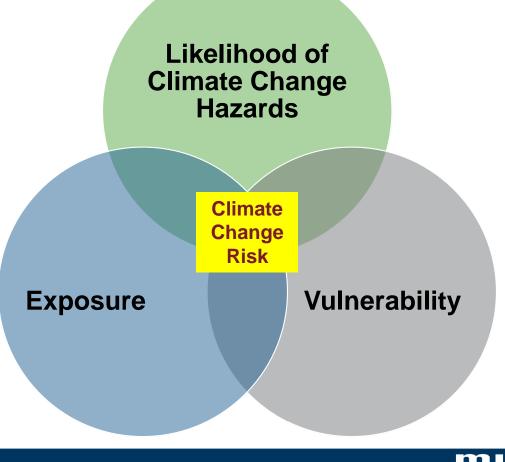
- Global Call for Action 2015 Paris Agreement.
- Many agencies / authorities are declaring climate emergencies and taking significant action.
- Professional responsibility to account for and address climate change.



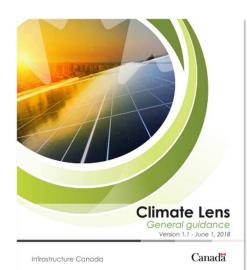
PROVINCE OF ONTARIO GUIDANCE

The Ontario MECP expects proponents to take into account:

- "the project's expected production of greenhouse gas emissions and impacts on carbon sinks (climate change mitigation"
- "resilience or vulnerability of the undertaking to changing climatic conditions (climate change adaptation)"


(Source: Guide: Considering Climate Change in the EA Process, MOECC, December 2017)

CLIMATE CHANGE ADAPTATION PLANNING


- What is Climate Adaptation Planning?
- Minimize impacts for various performance response factors
- Identify / address vulnerabilities
- Reduce recovery time and costs
- Why should you prepare a Resilience Plan?
- No 'one-size fits all' approach
- Each organization has to contend with specific climate change issues and unique design and condition characteristics

6

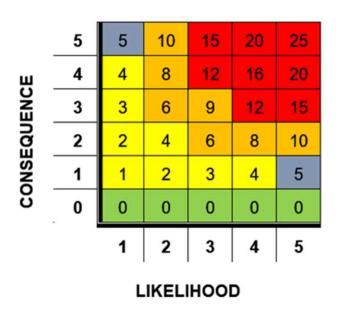
Assessment Process

- Multiple frameworks for conducting a climate risk assessment:
 - ISO 31000 & 31010 Risk Management
 - PIEVC Protocol
 - Infrastructure Canada Climate Lens General Guidance
- All follow similar steps to assess risks

<u> Assessment Process – Define Project</u>

- Define project and boundary conditions for assessment
 - What infrastructure assets (existing and planned) will be assessed?
 - What is the time horizon being considered?
 - What is the geographic area being considered?

Assessment Process – Gather Data


- Collect and review data regarding infrastructure assets
 - Design drawings
 - Condition assessments
- Collect climate data and projections

<u> Assessment Process – Assess Risk</u>

- Identify interactions between assets and climatic events
- Determine probability of climatic event
- Assess risk based on consequence and likelihood of events
- Conduct additional analysis as required

LEGEND

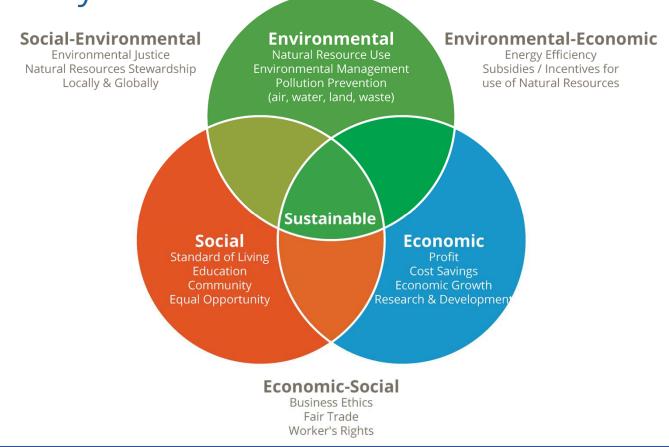
High Risk
Medium Risk
Low / Negligible Risk
Benefit
Not Applicable

Assessment Process – Reporting / Actions

- Develop recommendations to address risks
- Consider near, medium and longer term actions
- Implement, monitor and update the assessment

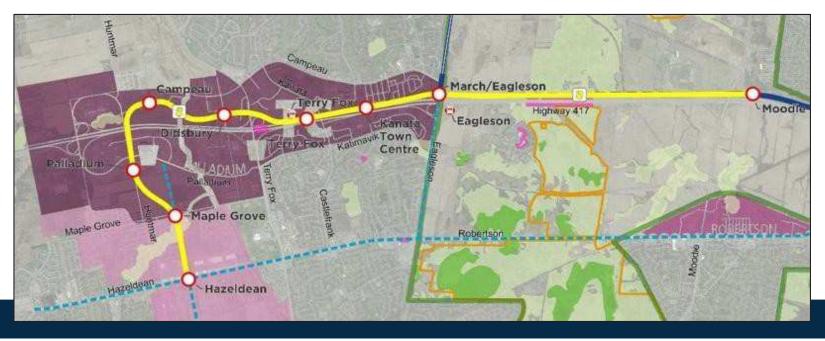
ENVISION - 64 Credits in 5 Categories

Quality of Life
14 CreditsWellbeing, Mobility, CommunityLeadership
12 CreditsCollaboration, Planning, EconomyResource Allocation
14 CreditsMaterials, Energy, Water


Natural WorldSiting, Conservation, Ecology14 Credits

Climate & Resilience Emissions, Resilience

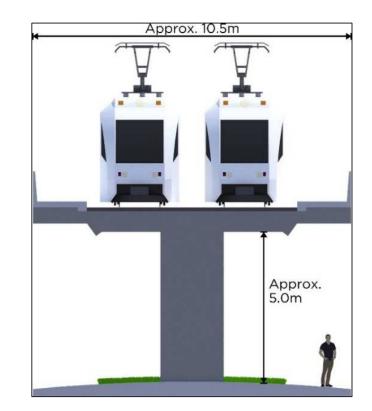
Sustainability



13

KANATA LRT PROJECT LOCATION

- Confederation Line (Stage 1) in operation
- Stage 2 Extension of Confederation Line West to Moodie and Baseline Stations is proceeding
- Future Stage 3 to extend LRT service further west


City of Ottawa - Kanata LRT EA Study – Climate Assessment

Adaptation:

- Vulnerability Assessment included identification of climate risk hazards based on RCP4.5 and RCP8.5 projections
- Risks and their severity were identified for each project component

Mitigation:

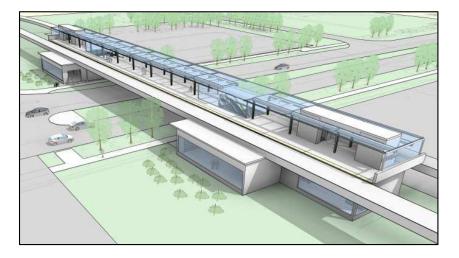
Carbon Footprint Assessment

INITIAL RISK ASSESSMENT

ID #	Infrastructure Components	Climate Change Factors					
		Average Temp.	Extreme Heat	Annual Rain	Extreme Rain	Freezing Rain	Extreme Wind
	Track / Guideway						
1	(Incl. Ballast and Drainage)						
2	Bridges - Underpasses <i>/</i> Overpasses						
3	Bridges / Culverts - Over Water						
4	Retaining Structures						
5	Overhead Contact / Catenary Systems (*)						

KANATA LRT EA - POTENTIAL VULNERABILITIES

Potential higher levels of Vulnerability / Risk are shown at right:



ID #	Infrastructure Components	Extreme Rain
1	Track / Guideway (Incl. Ballast and Drainage)	
3	Bridges / Culverts - Over Water	
7	Power Supply (Substations) Ground Level and Underground *	
		Eroozina
ID #	Infrastructure Components	Freezing Rain
5	Overhead Contact / Catenary Systems (*)	
	17	

LESSONS LEARNED

- First application of the provincial climate change guidance to a City of Ottawa transportation EA study.
- Workshops were effective for broad engagement.
- The process helped raise awareness.
- Commitments were captured in the EA study.

BACKGROUND

 Mushkegowuk Council Highway 11 to James Bay All-Season Road Feasibility Study

19

P

CLIMATE FACTORS / PROJECTIONS

Climate Projections based on:

- Historical Average, 1980-2010, from Moosonee Meteorological Station
- 2050 and 2080 horizons

Initial Climate Change Variables:

- Average and extreme temperature
- Snowfall
- Freeze/thaw cycles

 Average and extreme rainfall

POTENTIAL VULNERABILITIES

CLIMATE FACTORS	POTENTIAL CLIMATE IMPACTS
Freeze-thaw cycles	 Road deformation, shearing, deterioration
Warming and thawing of permafrost	 Ground settlement, slope instability
Dry forest conditions	 User Safety - Forest Fires

ACKNOWLEDGEMENTS

 The Kanata LRT EA Study was presented with the approval of the City of Ottawa. Parsons was the prime consultant.

 The James Bay ASR Study was presented with the approval of the Mushkegowuk Council.

THANK YOU

Andrew Harkness, P.Eng., PMP, ENV SP Morrison Hershfield Director / Climate Change Lead <u>aharkness@morrisonhershfield.com</u> T: 613-739-3258 / M: 613-791-3255