Evaluating Sustainable Design Alternatives in the Nuclear Industry Ontario Association for Impact Assessment

October 2022

Copyright C Hatch 2022. All Rights Reserved.

Challenge

- Satisfy Canada's Greening Government Strategy
- Increase certainty around Factors to be Considered in an Impact Assessment (under the modernized Impact Assessment Act)

Challenge

Adaptation & Mitigation

- What do we need to consider?
- How do we measure it?

Overview

- When to consider it?
- How do we tailor our analysis to consider the stage of design?

ΗΔΤϹΗ

Life Cycle Thinking

A framework that aims at accounting the impacts throughout the entire life cycle.

Embodied Carbon (Life Cycle Assessment)
 Operational Carbon (Energy Modelling)

Copyright © Hatch 2022. All Rights Reserved.

Climate Change Risk Assessment

ΗΔΤCΗ

Climate Change Risk Assessment

Establish context

- Review all relevant available climate datasets to characterize the baseline and future climate.
- Emphasis on climate variables contained within the National Building Code

Risk Assessment

- Identify, analyze and evaluate the risks
- Interactions between climate variables and infrastructure components.
- Assess likelihood and severity of predicted impacts.

Risk Treatment

 Identification and assessment of potential adaptation measures

Risk Treatment Opportunities

Climate Parameter	Identified Risk	Possible Adaptation Measures
Extreme Winter/Ice Storms	Damage to roof	Sloped roof to reduce snow loads
Forest Fires	Damage to building and health	Restoration of wetlands in surrounding areas
Higher Summer Temperatures	Increase demand for cooling	Vegetated/cool roof (if feasible) and reduction of solar glare through windows
Flooding	Failure of roof drainage system and flooding within building	Position and elevation of building

erview Adaptation Mitigation

Summary

Life Cycle Assessment

- Methodology to evaluate environmental impacts over the entire life cycle
- ISO Standards
 - ISO 14040 Principles
 and Framework
 - ISO 14044
 Requirements and Guidelines

Life cycle assessment framework based on ISO 14044

Overview 💦 🔪 Adapta

Mitigation S

Life Cycle Assessment

Goal and Scope definition

- Quantify embodied carbon emissions through the entire life cycle
- Including all envelope and structural elements
- 50 years lifetime

Element	Materials	QTY (kg)	Sourcing	Transport
Foundation	Concrete, 35 Mpa	400,032	40 km	lorry >32t
Walls	Autoclaved aerated concrete block	445	183 km	lorry>32t
	Roll formed steel cladding	12,087	550 km	lorry 16-32t
Columns	Concrete, 35 Mpa	131,399	40 km	lorry>32t
	Hot-Rolled Structural Sections	239,507	480 km	lorry>32t
Walls	Gypsum Board	53,881	183 km	lorry 16-32t
	Curtain wall	118,980	480 km	lorry >32t
Floors	Concrete, 35 Mpa	5,361,841	40 km	lorry >32t
Footings	Concrete, 35 Mpa	1,217,574	40 km	lorry >32t
Roofs	Concrete, 35 Mpa	1,436,504	40 km	lorry >32t

Inventory Analysis

- Estimate of material quantities, including replacement, based on Material take offs (MTO)
- Sourcing of materials
- End of Life assumptions

Impact Assessment

- Estimate of environmental impacts for each materials and processes
- LCI Databases / LCA Tool

ΗΔΤCΗ

Life Cycle Assessment Interpretation

Contribution Analysis

- Life Cycle Stages
- Material

Scenario Analysis

 Replacement of materials to consider a mass timber structure (12.6% reduction)

Mitigation

 Evaluation of alternative by comparing GHG kgCO₂eq/ m²

Copyright © Hatch 2022. All Rights Reserved.

Mitigation

Energy Modelling Process

Building design and functionality used to develop baseline EM

Alternative identification based on design stages, including:

- Structural/Siting Modelling
- Building geometry and orientation
- Window-to-wall ratio
- Thermal performance of the envelope and structure
- Heating & Cooling (HVAC) Systems Modelling
- Usage Modelling
- Lighting & energy use controls
- Service water heating systems

Evaluate alternatives

Standards and guidelines include:

- National Energy Code of Canada
- ASHRAE Standard 209-2018 Energy Simulated Aided Design for Buildings Except Low-Rise Residential Buildings
- Canada Green Building Council Zero Carbon Building Standards

erview Adaptation (10) Mitigation

Summarv

Evaluation of Alternatives

- Comparison of Alternatives to Consider:
 - Energy Model outputs, including:
 - Thermal Energy Demand Intensity (TEDI)
 - Total Energy Use Intensity (TEUI)
 - Greenhouse Gas Intensity (GHGI)
 - Client Preferences
 - Maintainability
 - Costs, including:
 - CAPEX & Future Maintenance
 - Energy Costs
 - Shadow Price of Carbon

Copyright © Hatch 2022. All Rights Reserved.

Energy Consumers

verview Adaptation Mitigation Summary

Mitigation Summary

- Some recommended design changes based on Life Cycle Assessment and Energy Model Results:
 - Increased R-value of insultation
 - Utilization of triple-glazed windows
 - Concrete specifications (Portland Limestone Cement vs Portland cement)
 - Exterior Siding materials (Steel vs Aluminum)
 - Window frame material (Aluminum vs Plastic)
- Identified required steps for future net zero transition.

Conclusions

 Early involvement in the design process is beneficial to permit maximum influence of sustainability features in the design, though involvement in any stage is possible. Summary

- Adaptation and Mitigation must be considered concurrently, with inputs from design team, sustainability practitioners, and owner, to ensure that recommendations are feasible and practical.
- Quantifying the effect of design changes (which may be generally accepted as improvements in a qualitative manner) allows for clear demonstration of cost- and impact-benefit over the life of a project and can increase certainty in the Impact Copyright © Hatch 2022. All Rights Reserved.

+ Thank you

For more information, please visit www.hatch.com

Kathleen Vukovics Ontario Regional Director, Environmental Services Email: kathleen.vukovics@hatch.com

Mimi Ginger Wilde, P. Eng. Senior Engineer, Nuclear Email: mimi.wilde@hatch.com

Catalina Gonzalez, P. Eng. Environmental Specialist Email: gonzalezc@hatch.com

