

MONITORING AQUATIC ENVIRONMENTS

Using Indigenous Knowledge and Western Science in Conjunction

Session 6

Richard Nesbitt, Neil HutchinsonHeidi KleinLuis ManzoHutchinson Environmental Sciences Ltd.Sanammanga Solutions Inc.Kivalliq Inuit Association

Inuu'tuti: Baker Lake Aquatic Cumulative Effects Monitoring Program

Overall Goal: Establish a strong aquatic cumulative effects monitoring program for the Kivalliq region that includes Traditional Knowledge and Western Science approaches – "One Voice"

Science Questions

- Are current conditions acceptable?
 - If not what are the causes?
- Is the Baker Lake watershed changing?
 - If so, what are the causes?

Community Questions

- · Is the water safe to drink?
- Are the fish good to eat?

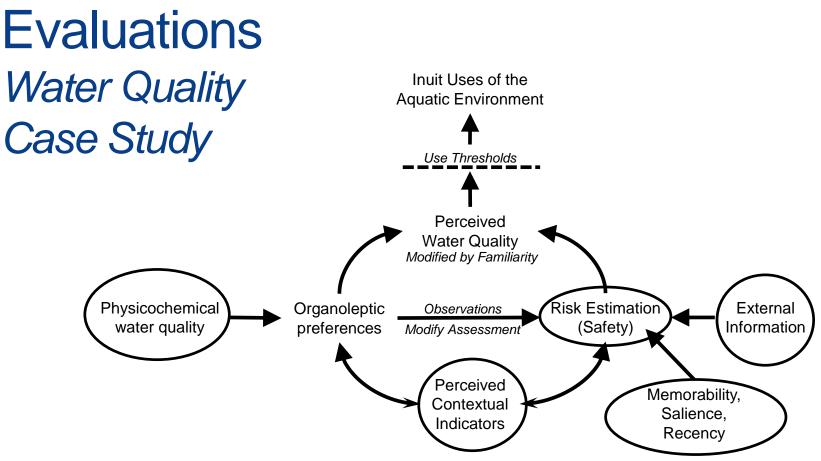
Approach

Year 1: 2015-2016	Year 2: 2016-2017	Year 3: 2017-2018
Identify key VECs in the aquatic environment and traditional Inuit uses associated with each	Confirm key Inuit uses associated with each VEC	Coordinate collecting of TK observations and scientific measurements.
Determine TK measurement indicators associated with each VEC	Refine TK measurement indicators of determine common indicators between the two knowledge systems	Correlate measurements collected by each knowledge system to determine how measurements collected by one is represented by the other
Identify conceptual thresholds for continuation of each use.	Identify characteristics of water and fish that are desirable and undesirable, and the locations where they occur.	Define normal conditions , and those indicating degradation or a divergence from them. Identify TK thresholds for discontinuing traditional uses

Approach

Interviews and literature

Year 1: 2015-2016	Year 2: 2016-2017	Year 3: 2017-2018
Identify key VECs in the aquatic environment and traditional Inuit uses associated with each	Confirm key Inuit uses associated with each VEC	Coordinate collecting of TK observations and scientific measurements.
Determine TK measurement indicators associated with each VEC	Refine TK measurement indicators of determine common indicators between the two knowledge systems	Correlate measurements collected by each knowledge system to determine how measurements collected by one is represented by the other
Identify conceptual thresholds for continuation of each use.	Identify characteristics of water and fish that are desirable and undesirable, and the locations where they occur.	Define normal conditions , and those indicating degradation or a divergence from them. Identify TK thresholds for discontinuing traditional uses


Key VECs and Uses

VEC	Water Quantity	Water Quality	Fish
Inuit Use	 Transportation by boat Access to traditional routes 	 Hot beverages (tea, coffee) Drinking water Cooking water Washing 	 Harvesting fish Consuming fish
Conceptual Threshold	Changing methods of transportation and altered route access	No longer acceptable for consumption or washing	Significant decline in catch per unit effort. Undesirable size, condition, fat content or appearance.

Each use is assessed through TK indicators

These can be linked to western science indicators and complimented by western science evaluations

Measurement indicators which can be measured through both TK and western science are Common Indicators

Common Indicators

Indicator Types	TK Measurement Indicators	Western Science Measurement Indicators	
	Taste of "land" Saltiness	Organic carbon pH Conductivity Conductivity Salinity	Nutrient concentrations Chlorophyll a Hardness Alkalinity
Taste & smell (Organoleptics)	Fishy smell	Chloride, sodium Specific algal community Nutrient concentrations: phosphorus	Chlorophyll a nitrogen species,
	Water is "refreshing"	Salinity pH Copper, iron, manganese, sodium Total suspended solids Total dissolved solids	Chloride, sodium Temperature Hardness Turbidity Flow

Approach

Interviews and Field Samples

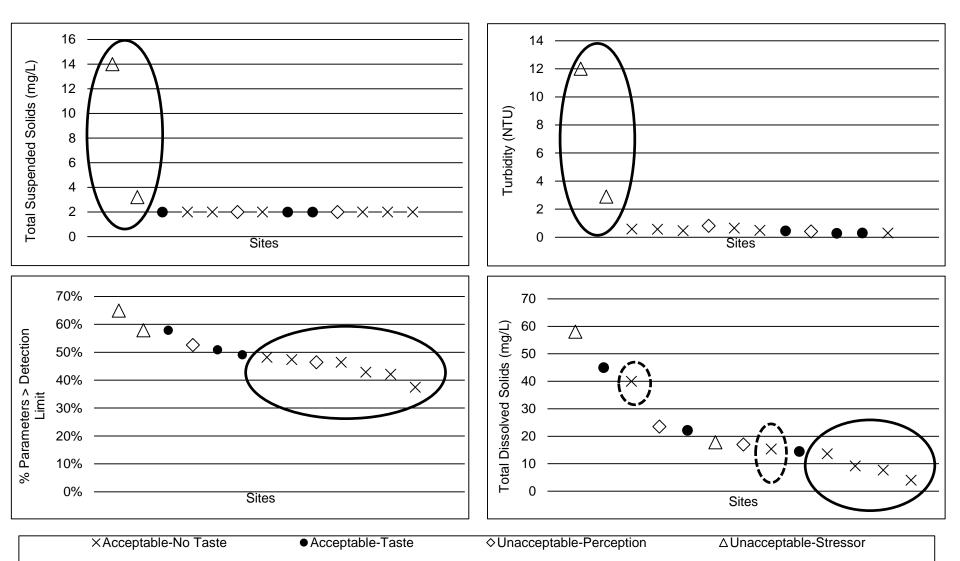
Year 1: 2015-2016	Year 2: 2016-2017	Year 3: 2017-2018
Identify key VECs in the aquatic environment and traditional Inuit uses associated with each	Confirm key Inuit uses associated with each VEC	Coordinate collecting of TK observations and scientific measurements.
Determine TK measurement indicators associated with each VEC	Refine TK measurement indicators of determine common indicators between the two knowledge systems	Correlate measurements collected by each knowledge system to determine how measurements collected by one is represented by the other
Identify conceptual thresholds for continuation of each use.	Identify characteristics of water and fish that are desirable and undesirable, and the locations where they occur.	Define normal conditions , and those indicating degradation or a divergence from them. Identify TK thresholds for discontinuing traditional uses

Site Types Acceptable Unacceptable **Perceived Contextual** Indicators Perceived Contextual **Perceived Contextual** Indicators Indicators **Perceived Contextual** Indicators **Stressor**

Site Types

Acceptable

No taste


With a taste

 Greater proportion of parameters above detection limit

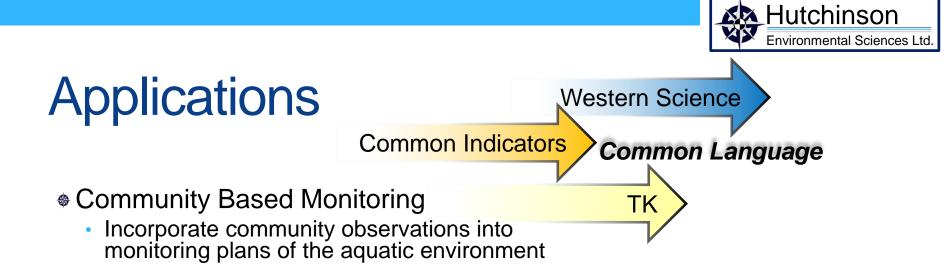
Unacceptable Stressor linked **Risk Estimation**

TK-Science Correlations

Interpretations: TK Baseline Monitoring

Difficult to link individual parameters to reported taste

- Organoleptic preferences vary by individual and region
- Confounds are prevalent
- Difficult to establish consistent thresholds


Reports on intensity of taste are more consistent

- Lack of taste indicates generally lower concentrations
- Presence of taste indicates an increase in concentrations
- Some parameters are known organoleptics

Small changes in turbidity/TSS can be distinguished

Observed changes are salient memories

- Changes in where people use the environment
- Changes in where taste is or isn't noticed

- Education and New Translations
 - Develop translations for modern concepts
 - Facilitate improved understanding of interactions between potential project activities and the environment
- Improved Consultations
 - Regulatory: specifically address parameters influencing local organoleptic preferences and risk evaluation
 - Discharge criteria
 - Monitoring parameter suites
 - Require mitigation measures
 - Land Use Planning: Full impact of management decisions
 - What aspects the aquatic environment can be permitted to change?
 - Can we have a land use that doesn't impair the aquatic environment?

FUNDING

POLAR Knowledge Canada

Neil Hutchinson, Ph.D. | Principal Scientist Neil.Hutchinson@environmentalsciences.ca

Richard Nesbitt, M.Sc. | Aquatic Scientist Richard.Nesbitt@environmentalsciences.ca